• Существует ли бесконечное множество натуральных чисел в котором никакие 2 не являются взаимно простыми, а любые три взаимно просты? P.s. Нужно доказательство помимо ответа.

Ответы 1

  • Если такое множество существует, то рассмотрим его минимальный элемент. Он делится на конечное число простых p[1], ... ,p[k]. Каждый последующий элемент множества обязан делиться на одно из этих p[i], причем каждое такое p[i] может делить только один из последующих элементов (иначе было бы 3 не взаимно простых элемента), но тогда такое множество имеет не более k+1 элементов, т.е. оно конечно. Противоречие.
    • Автор:

      violet80
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years