• Решите неравенство
    [tex] \sin^2 x-6\sin x\cos x+5\cos^2 x\ \textgreater \ 0;\\
    1+2\sin x \geq 4\sin x \cos x+2\cos x[/tex]

Ответы 1

  • 1)\quad sin^2x-6sinx\cdot cosx+5cos^2x\ \textgreater \ 0\; |:cos^2x\ \textgreater \ 0,cosxe 0\\\\tg^2x-6tgx+5\ \textgreater \ 0\\\\(tgx)_1=1\; \; ili\; \; (tgx)_2=5\; ,\qquad +++(1)---(5)+++\\\\tgx\in (-\infty ,1)\cup (5,+\infty )\\\\ \left [ {{tgx\ \textless \ 1} \atop {tgx\ \textgreater \ 5}} ight. \;  \left [ {{x_1\in (-\frac{\pi}{2}+\pi n,\; \frac{\pi}{4}+\pi n)} \atop {x_2\in (arctg5+\pi n,\; \frac{\pi}{2}+\pi n)}} ight. \\\\x\in (-\frac{\pi}{2}+\pi n,\; \frac{\pi}{4}+\pi n)\cup (arctg5+\pi n,\frac{\pi}{2}+\pi n)\; ,n\in Z2)\quad 1+2sinx \geq 4sinx\cdot cosx+2cosx\\\\2(sinx-cosx)-4sinx\cdot cosx+1 \geq 0\\\\t=sinx-cosx\; \; \to \; \; t^2=(sinx-cosx)^2=1-2sinx\cdot cosx\; \to \\\\2sinx\cdot cosx=1-t^2\; \; \to \\\\2t-2(1-t^2)+1 \geq 0\\\\2t^2+2t-1 \geq 0\\\\D/4=1+2=3\; ,\; \; t_{1,2}= \frac{-1\pm \sqrt3}{2}\\\\+++( \frac{-1-\sqrt3}{2} )---( \frac{-1+\sqrt3}{2} )+++ \\\\t\in (-\infty , \frac{-1-\sqrt3}{2} \, ]\cup[\,  \frac{-1+\sqrt3}{2} ,+\infty )\\\\a)\; \; sinx-cosx \leq  \frac{-1-\sqrt3}{2} |:\sqrt2 \frac{1}{\sqrt2}sinx-  \frac{1}{\sqrt2} cosx \leq  \frac{-1-\sqrt3}{2\sqrt2} \\\\cos\frac{\pi}{4}\cdot sinx-sin\frac{\pi}{4}\cdot cosx \leq  \frac{-1-\sqrt3}{2\sqrt2} \\\\sin(x-\frac{\pi}{4} )\leq  \frac{-1-\sqrt3}{2\sqrt2} \; ,\; \;  \frac{-1-\sqrt3}{2\sqrt2} \approx -0,97 arcsin \frac{-1-\sqrt3}{2\sqrt2} +2\pi n\leq x-\frac{\pi}{4} \leq \pi +arcsin \frac{-1-\sqrt3}{2\sqrt2} +2\pi n\; ,\; n\in Z\frac{\pi}{4}+arcsin \frac{-1-\sqrt3}{2\sqrt2} +2\pi n \leq x \leq  \frac{5\pi}{4} +arcsin \frac{-1-\sqrt3}{2\sqrt2}+2\pi n b)\quad sinx-cosx \geq  \frac{-1+\sqrt3}{2} \; |:\sqrt2\\\\sin(x-\frac{\pi}{4})  \geq \frac{-1+\sqrt3}{2\sqrt2}\; ,\; \;  \frac{-1+\sqrt3}{2\sqrt2}  \approx 0,26\\\\ \pi -arcsin \frac{-1+\sqrt3}{2\sqrt2} +2\pi n\leq x-\frac{\pi}{4} \leq arcsin \frac{-1+\sqrt3}{2\sqrt2} +2\pi n,\; n\in Z\\\\ \frac{5\pi}{4}-arcsin \frac{-1+\sqrt3}{2\sqrt2} +2\pi n\leq x \leq \frac{\pi}{4}+arcsin\frac{-1+\sqrt3}{2\sqrt2}+2\pi n Otvet:\; x\in [\, \frac{\pi}{4}+arcsin \frac{-1-\sqrt3}{2\sqrt2} +2\pi n,\frac{5\pi}{4}+arcsin \frac{-1-\sqrt3}{2\sqrt2} +2\pi n]\cup \cup [\,  \frac{5\pi}{4} -arcsin \frac{-1+\sqrt3}{2\sqrt2}+2\pi n,\;  \frac{\pi}{4} +arcsin \frac{-1+\sqrt3}{2\sqrt2}  +2\pi n\, ]
    • Автор:

      roland13
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years