√3/2 Cosx +1/2Sinx 1)Sin(π + π/3+x) = 2Sin(π+π/3 - x) -Sin(π/3 +х) = -2Sin(π/3 -x) Sin(π/3 +х) = 2Sin(π/3 -x) Sin π/3Cosx + Cosπ/3Sinx = 2(Sin π/3Cosx - Cosπ/3Sinx ) √3/2 Cosx + 1/2Sinx = 2( √3/2 Cosx -1/2Sinx ) √3/2 Cosx +1/2Sinx = √3 Cosx - Sinx √3/2 Cosx - √3Cosx +1/2Sinx + Sinx = 0-√3Cosx + 3/2Sinx = 03/2Sinx = √3Cosx | : 3/2Cosxtgx = 2√3/3 x = arctg2√3/3 + πk , k ∈Z2)√(1 - 2Cosx + Cos²x + Sin²x) = 2Sinx/2 √(1 - 2Cosx +1) = 2Sinx/2 √(2-2Cosx) = 2Sinx/2 √2(1 - Cosx) = 2Sinx/2 √4(1 - Cosx)/2 = 2Sinx/22√(1-Сosx)/2= 2Sinx/2 +- Sinx/2 = Sinx/22Sinx/2 = 0Sinx/2 = 0x/2 = πn, n ∈ Zx = 2πn, n ∈ Z3) 5*2SinxCosx + 5Cosx -8Sinx -4= 010SinxCosx +5Cosx -8Sinx -4 = 05Cosx(2Sinx +1) -4(2Sinx +1) = 0(2Sinx +1)(5Cosx -4) = 02Sinx +1 = 0 или 5Cosx -4 = 0a) Sinx = -1/2 б) Cosx = 4/5x = (-1)ⁿ⁺¹ π/6 + nπ, n ∈Z x = +-arcCos4/5 + 2πk, k ∈ Z