• В геометрической прогрессии с четным числом членов сумма всех ее членов в 3 раза больше суммы членов, стоящих на нечетных местах. Найдите знаменатель прогрессии. Заранее спасибо.

Ответы 1

  • я подозреваю что тут закралась неясность, в прогрессии насколько я помню количество элементов бесконечно, хотя в убывающей геометрической прогресии сумма всех элементов может сходиться.

     

     

    инфми словами условие следует понимать так что n первых членов прогресии, где n = 2k, 

    выполняется условие \sum_{k=1}^{\ n/2}(b_{2k}) в три раза больше, чем \sum_{k=0}^{\ n/2}(b_{2k+1})

    рассмотрим это более подробно на примере первых  шести элементов

    сумма нечетных S(1,3,5) = b1 + b3 + b5

    сумма четных S(2,4,6) = b2 + b4 + b6 = b1*q + b3*q + b5*q = q(b1 + b3 + b5) = q*S(1,3,5)

    следовательно отношение между четной суммой и нечетной равно знаменателю прогрессии.

    Для нашей задачи это число 3

    Ответ 3

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years