• Исследуйте функцию y=8x^3 - 3x^4 - 7 на максимум и минимум. Срооочно,помогите пожалуйста !

Ответы 1

  •  y=8x^3 - 3x^4 - 7\\y^{,}=24x^{2}-12x^{3}\\24x^{2}-12x^{3}=0\\12x^{2}(2-x)=0\\x_{1,2}=0;x_{3}=2.

    Так как точка х=0 являетсядвойной, то производная в ней не меняет знак, следовательно эта точка не будет экстремумом, она является точкой перегиба, а в точке х = 2 производная меняет свой знак с + на - (смотрим слева направо), значит в этой точке функция будет иметь максимум. у(2)= 8*8-3*16=16. Точка максимума будет иметь координаты (2;16).

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years