• найдите наименьшее значение функции у=√х^2-4х+8

Ответы 1

  • 1. Выделение полного квадрата:y= \sqrt{(x^2-4x+4)+4} = \sqrt{(x-2)^2+4}; , очевидно, что наименьшее значение функции достигается, когда значение квадрата под корнем 0 (там х=2), тогда y_{min}= \sqrt{4}=2 2. Стандартно через производную:y'= \frac{1}{2 \sqrt{x^2-4x+8} }*(x^2-4x+8)'= \frac{2x-4}{2 \sqrt{x^2-4x+8} }= \frac{x-2}{ \sqrt{x^2-4x+8} };   Видно, что  когда x>2, y'>0 (функция возрастает) и когда x<2 y'<0 - функция убывает, т.е. наименьшее значение достигается при x=2;y= \sqrt{2^2-4*2+8}= \sqrt{4} =2
    • Автор:

      mimiodxw
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years