• Пусть D- дискриминант квадратного трехчлена ax^2 + bx + c .Определите знаки корней уравнения ax^2 + bx + c= 0, если :
    а) D>0, a<0, b>0, c<0
    б) а>0, с <0

Ответы 1

  • По теореме Виетта х1+х2= -b                                  x1*x2 = c1) D>0, a<0, b>0, c<0. Получаем уравнение вида -ax^2+bx-c=0. Разницы нет будем мы находить корни при а положительном или отрицательном, корни либо буду оба положительны либо отрицательны либо один отрицательный один положительный, поэтому проще будет если а будет положительным. Умножим на (-1). Получим ax^2-bx+c=0. с положительно, b отрицательно, значит х1 и х2 положительные корни. 2) a>0, c<0. Получаем ax^2+bx-c=0. c отрицательно, b положительно, значит произведение корней отрицательно и один из корней отрицательный, а другой положительный. 
    • Автор:

      urielqqjj
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years