Cos2x + 5sin| x | =3 решите уравнение1) x>0Cos2x + 5sin| x | =3 Cos2x + 5sin x =3 1-2sin² x +5sin x =3 -2sin² x+5sin x-2 =0 2sin² x-5sin x+2 =0 sin x=t 2t² -5t+2 =0 t1=[5-√(25-16)]/4 =(5-3)/4 =1/2 t2=[5+√(25-16)]/4= 2 sin x=1/2 x=(-1)ⁿ(π/6)+πn, n∈Zsin x=2 нет решений2)1) x<0Cos2x + 5sin| x | =3 Cos2x - 5sin x =3 1-2sin² x -5sin x =3 -2sin² x-5sin x-2 =0 2sin² x+5sin x+2 =0 sin x=t 2t² +5t+2 =0 t1=[-5-√(25-16)]/4 =(-5-3)/4 =-2 t2=[-5+√(25-16)]/4= (-5+3)/4=-1/2 sin x=-1/2 x=(-1)^(n+1)(π/6)+πn, n∈Zsin x=-2 нет решенийответ x=(-1)ⁿ(π/6)+πn, n∈Zx=(-1)^(n+1)(π/6)+πn, n∈Z