• Помогите решить: интеграл sin^3x cos^3x dx. Желательно с полным объяснением

Ответы 1

  • \int sin^3x\cdot cos^3x\, dx=\int (\frac{1}{2}sin2x)^3dx=\frac{1}{8}\int sin^22x\cdot sin2x\, dx=\\\\=\frac{1}{8}\int (1-cos^22x)\cdot sin2x\, dx=[\, t=cos2x,\; dt=-2sin2x\, dx\, ]=\\\\=\frac{1}{8}\int (1-t^2)\cdot \frac{-dt}{2}=-\frac{1}{16}\int (1-t^2)dt=-\frac{1}{16}\cdot (t-\frac{t^3}{3})+C=\\\\=-\frac{1}{16}\cdot (cos2x-\frac{cos^32x}{3})+C
    • Автор:

      hamlet
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years