Решение2sinx= – √3sinx = - (√3/2)x = (-1)^(n + 1) * arcsin(√3/2) + πn, n ∈ Zx = (-1)^(n + 1) * (π/3) + πn, n ∈ ZНайдём все корни уравнения на промежутке [-π ; 3π/2]- π ≤ (π/3) + πn ≤ 3π/2 делим на π и умножаем на 6- 6 ≤ 2 + 6n ≤ 9- 6 - 2 ≤ 6n ≤ 9 - 2- 8 ≤ 6n ≤ 7- 8/6 ≤ n ≤ 7/6- 1 (1/3) ≤ n ≤ 1 (1/6)n₁ = - 1x = (-1)^(- 1 + 1) * (π/3) + π*(- 1) = - π/3 - π = - 4π/3n₂ = 0x = (-1)^(0 + 1) * (π/3) + π*0 = - π/3n₃ = 1x = (-1)^(1 + 1) * (π/3) + π*1 = π/3 + π = 4π/3Ответ: x₁ = - 4π/3; x₂ = - π/3; x₃ = 4π/3