• Нужно решение С5. Найдите все значения параметра a, при каждом из которых уравнение cos(sqrt(a^2-x^2))=1 имеет ровно восемь различных решений

Ответы 1

  • a^2-x^2=(2pi*n)^2

    x^2=+/-sqrt(a^2-(2pi*n)^2)

    8 решений, то есть |n|=0,1,2,3 значит a^2>(2pi*3)^2, но при этом не должно выполнятся для большего количества решений, то есть |n|=4 и так далее, значит a^2<(2pi*4)^2

    и тогда решая эти два неравенства получаем, что a(-8pi;-6pi)U(6pi;8pi)

    • Автор:

      nobel
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years