Примем весь объем работы за 1.Скорость первой бригады - х, скорость второй бригады у.Тогда за 3,5 часа первая бригада сделала 3,5 х работы.За 6 часов вторая бригада сделала 6у работы.Все это равно всему объему работы, то ест 1. составим первое уравнение.3,5 х + 6у = 1. (1)Второе.По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая. поэтому вотрое уравнение t2 - t1 = 5;1/y - 1/x = 5;x - y = 5xy; (2)Получили 2 уравнения с 2 неизвестными.Выразим y через x во втором уравнении.x = 5xy + y;x = y(5x + 1) ;y = x /(5x+1);Подставим в первое уравнение и решим квадратное уравнение:3,5 x + 6x/(5x+1) = 1;3,5x *(5x+1) + 6x = 5x + 1;17,5 x^2 + 3,5x + 6x - 5x - 1 = 0;17,5 x^2 + 4,5 x - 1 = 0; /*2;35x^2 + 9x - 2 = 0;D = 81 - 4*35*(-2) = 81 + 280 = 361= 19^2; x1 = (-9+19) / 70 = 1/7.x2= (-9 - 19) /70 = - 2/7 < 0.Найдем у при х = 1/7.y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12.Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней.Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней.Ответ 7 дней для 1 бригады и 12 дней для второй бригады.12 можно было бы найти проще 5+7 = 12