Изначально мы раскладываем по формуле : cos(a-b)=cosacosb+sinasinb и sin(a+b)=sinacosb+cosasinb. Далее у нас получилось 3cos pi/4*cosx+3sin pi/4*sinx-sinx*cos pi/4- cosx*sin pi/4=0. Здесь есть табличные значения, которые можно представить в виде числа. Потом мы получили: 3√2/2* cosx+3√2/2*sinx-√2/2*sinx-√2/2*cosx=0. Здесь есть подобные, т. е.: 3√2/2*cosx-√2/2*cosx и 3√2/2*sinx-√2/2*sinx. В итоге : 2√2/2*cosx+2√2/2*sinx, двойки сокращаются, и остаются только √2cosx+√2sinx.