1(cos²2t-sin²2t)(cos²2t+sin²2t)=cos²2t-sin²2t=cos4t2sina=-√(1-cos²a)=-√(1-225/289)=-√(64/289)=-8/17sin2a=2sinacosa=2*(-8/17)*15/17=-240/289cos2a=cos²a-sin²a=225/289-64/289=161/289tg2a=sin2a/cos2a=-240/289:161/289=-240/289*289/161=-240/1613(sin3acos2b+cos3asin2b-sin3acos2b+cos3asin2b)/(cos3acos2b-sin3asin2b++cos3acos2b+sin3asin2b)=2cos3asin2b/2cos3acos2b=sin2b/cos2b=tg2b4sina=-√(1-cos²a)=-√(1-4/9)=-√5/3cosb=-√(1-sin²b)=-√(1-1/9)=-2√2/3sin2a=2sinacosa=2*(-√5/3)*2/3=-4√5/9sin2b=2sinbcosb=2*1/3*(-2√2/3)=-4√2/9cos2a=cos²a-sin²a=4/9-5/9=-1/9cos2b=cos²b-sin²b=8/9-1/9=7/9sin(2a+2b)=sin2acos2b+cos2asin2b=-4√5/9*7/9-1/9*(-4√2/9)==-28√5/81+4√2/81=4(√2-7√5)/81