• Найдите геметрическую прогрессию, состоящую из 6 членов, зная, что сумма трех первых ее членов равна 168, а сумма трех последних 21.
    (Спасибо)

Ответы 4

  • А, какое у равнение первое?
    • Автор:

      simba79
    • 6 лет назад
    • 0
  • Вообще то под первым уравнением системы считается верхнее.
  • Вау, спасибо помог
  • Сумма первых трёх членов S3=b1+b1*q+b1*q²=b1*(q²+q+1). Сумма трёх последних членов S=b1*q³+b1*q⁴+b1*q⁵=b1*q³(q²+q+1), где b1 и q - первый член и знаменатель прогрессии. Получаем систему уравнений:b1*(q²+q+1)=168b1*q³*(q²+q+1)=21Подставляя левую часть первого уравнения во второе, приходим к уравнению q³*168=21. Отсюда q³=21/168=1/8 и q=∛1/8=1/2. Подставляя это значение в первое уравнение, находим b1=96. Тогда b2=48, b3=24, b4=12, b5=6, b6=3.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years