• Помогите решить уравнения
    1.2sin(П/3-x/4)=√3
    2.cos(П/2-x/2)-3 cos(П-x/2)=0
    3.sin²x+√3 sin x·cos x=0
    4.2 sin²x+5sin x·cos x-7 cos²x=0
    Очень нужноо. Заранее спасибо

Ответы 2

  • спасибо
  • 1. 2sin( \frac{ \pi }{3} - \frac{x}{4} )= \sqrt{3}  \\ sin( \frac{ \pi }{3}- \frac{x}{4}  )= \frac{ \sqrt{3} }{2}  \\   \left \{ {{\frac{ \pi }{3} - \frac{x}{4} = \frac{ \pi }{3}+2 \pi n } \atop {\frac{ \pi }{3} - \frac{x}{4} = \frac{2 \pi }{3}+2 \pi n }} ight.  \\  \left \{ {{- \frac{x}{4} = 2 \pi n } \atop {- \frac{x}{4} = \frac{ \pi }{3}+2 \pi n }} ight.  \\  \left \{ {{ \frac{x}{4} =-2 \pi n} \atop { \frac{x}{4} =- \frac{ \pi }{3} -2 \pi n}} ight.\left \{ {{x=-8 \pi n} \atop {x=- \frac{4 \pi }{3}  -8 \pi n}} ight.  \\ OTBET:-8 \pi n;- \frac{4 \pi }{3}-8 \pi n n∈Z2.cos( \frac{ \pi }{2}- \frac{x}{2}  )-3cos( \pi - \frac{x}{2} )=0 \\ sin \frac{x}{2} +3cos \frac{x}{2} =0|:cos \frac{x}{2}  \\ tg \frac{x}{2} +3=0 \\ tg \frac{x}{2} =-3 \\  \frac{x}{2} =-arctg3+ \pi n \\ x=-2arctg3+2 \pi n=2( \pi n-arctg3) \\ OTBET:2 \pi n-arctg3 n∈Z3.sin^2x+ \sqrt{3}sinxcosx=0|:sin^2x \\ 1+ \sqrt{3} ctgx=0 \\ ctgx=- \frac{1}{ \sqrt{3} }   \\ x= \frac{2 \pi }{3} + \pi n \\ OTBET: \frac{2 \pi }{3} + \pi n n∈Z4. 2 sin^2x+5sin xcos x-7 cos^2x=0|:cos^2x \\ 2tg^2x+5tgx-7=0 \\ t=tgx \\ 2t^2+5t-7=0 \\  \left \{ {{t_1=1} \atop {t_2=-3,5}} ight.  \\  \left \{ {{tgx=1} \atop {tgx=-3,5}} ight.  \\  \left \{ {{x= \frac{ \pi }{4}+ \pi n } \atop {x=-arctg3,5+ \pi n}} ight.  \\ OTBET: \frac{ \pi }{4} + \pi n;-arctg3,5+ \pi n n∈Z
    • Автор:

      bradyo9ki
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years