Так как n+m+k делится на 6, то n+m+n=6a, где a - некоторое целое число.Тогда n = 6a-(m+k). Подставим это в выражение n³+m³+k³:(6a-(m+k))³+m³+k³ = (6a)³-3*(6a)²(m+k)+3*(6a)(m+k)²-(m+k)³+m³+k³.Заметим, что (6a)³-3*(6a)²(m+k)+3*(6a)(m+k)² делится на 6, так как каждое из слагаемых делится на 6. Значит, надо доказать, что -(m+k)³+m³+k³ делится на 6.-(m+k)³+m³+k³=-m³-3m²k-3mk²-k³+m³+k³=-3mk(m+k) - делится на 3.Докажем, что это выражение делится и на 2.1) Если хотя бы одно из m и k делится на 2, то mk делится на 2.2) Если m и k нечетные, то m+k делится на 2.Таким образом, -3mk(m+k) делится на 6, а значит, n³+m³+k³ делится на 6, что и требовалось доказать.