• Алгебра 8 класс.
    Пусть х1 и х2-корни квадратного уравнения х* +2х-5=0. Составьте квадратное уравнение, корнями которого являются числа 1/х1 и 1/х2.

Ответы 1

  • x^2+2x-5=0\\D=24=(2\sqrt{6})^2\\x_{1,2}=\frac{-2б2\sqrt{6}}{2}=\left[\begin{array}{ccc}x_1=-1+\sqrt{6}\\x_2=-1-\sqrt{6}\end{array}ightнам надо составить квадратное уравнение, решениями которого являются следующие числа: \left[\begin{array}{ccc}x_1=\frac{1}{-1+\sqrt{6}}\\x_2=\frac{1}{-1-\sqrt{6}}\end{array}ightочень даже не проблемно это сделать, зная теорему Виета – ей мы и воспользуемся. Итак, теорема Виета для приведённого квадратного уравнения гласит: \left[\begin{array}{ccc}x_1+x_2=-b\\x_1*x_2=c\end{array}ightОчень кстати, что у нас есть эти икс один и два, подставляем и решаем: \left[\begin{array}{ccc}\frac{1}{-1+\sqrt{6}}+\frac{1}{-1-\sqrt{6}}=-b\\\frac{1}{-1+\sqrt{6}}*\frac{1}{-1-\sqrt{6}}=c\end{array}ight\to\left[\begin{array}{ccc}\frac{\sqrt{6}-1-(\sqrt{6}+1)}{(\sqrt{6}+1)(\sqrt{6}-1)}=b\\-\frac{1}{(\sqrt{6}-1)(\sqrt{6}+1)}=c\end{array}ight\to\left[\begin{array}{ccc}-\frac{2}{5}=b\\-\frac{1}{5}=c\end{array}ightОтвет: 5x^2-2x-1=0
    • Автор:

      rylie
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years