• решите неравенства:4sin2xcox2x > корня из 3
    2 cos(4x + pi/3) < корня из 3

Ответы 1

  • 4sin2xcos2x > √32sin4x > √3sin4x > √3/2π/3 + 2πn < 4x < 2π/3 + 2πnπ/12 + πn/2 < x < π/6 + πn/2ОТВЕТ: (π/12 + πn/2; π/6 + πn/2) n∈Z2cos(4x + π/3) < √3cos(4x + π/3) < √3/2π/6 + 2πn < 4x + π/3 < 11π/6 + 2πnπ/6 - π/3 + 2πn < 4x < 11π/6 - π/3 + 2πn-π/6 + 2πn < 4x < 3π/2 + 2πn-π/24 + πn/2 < x < 3π/8 + πn/2ОТВЕТ: (-π/24 + πn/2; 3π/8 + πn/2) n∈Z
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years