#1(1/2)^(log1/2 (x^2 - 1)) > 1(1/2)^(log1/2 (x^2 - 1)) > (1/2)^0log1/2 (x^2 - 1)) < 0log1/2 (x^2 - 1)) < log 1/2 (1)x^2 - 1 > 1 x^2 > 2 x^2 - 2 > 0 (x - √2)(x + √2) > 0 ОДЗx^2 - 1> 0 (x - 1)(x + 1) > 0 x ∈ (- ∞ ; - 1) ∪ (1; + ∞) + - + --------- (- √2 ) -------------( √2) -----------------> x Ответx ∈ ( - ∞ ; - √2) ∪ (√2; + ∞)#22^(log 2(x^2 + x)) < 2^1x^2 + x - 2< 0 x ∈ ( - 2; 1)#3log81 (x + 2) > 1 /236 - x^2 > 0 (6 - x)(6 + x) > 0 log81 (x + 2) > log81 (9)(x - 6)(x + 6) < 0 x + 2 > 9x ∈ ( - 6; 6 )x ∈ (7; + ∞) + одз x > - 2нет решений ∅