Т. к. sin(x) ≡ cos( (π/2) - x), поэтому имеемcos(3x) + cos( (π/2) - x) = 0,Воспользуемся формулой "сумма косинусов":cos(A) + cos(B) ≡ 2*cos( (A+B)/2)*cos( (A-B)/2 ),cos(3x) + cos( (π/2) - x) ≡ 2*cos( (3x + (π/2) -x)/2 )*cos( (3x - (π/2) + x)/2)≡≡ 2*cos( x + (π/4))*cos( 2x - (π/4) ) = 0,1) cos( x + (π/4)) = 0,или2) cos( 2x - (π/4) ) = 0.1) x + (π/4) = (π/2) + π*k, k∈Z,x = (π/2) - (π/4) + π*k = (π/4) + π*k,2) 2x - (π/4) = (π/2) + π*n, n∈Z,2x = (π/2) + (π/4) + π*n = (3π/4) + π*n,x = (3π/8) + (π*n/2).