• Помогите с алгеброй, что-нибудь плииз!!!
    1. Найдите производную функции f(x)=(3x+2)^3*(2x-1)^4
    2. Вычислите производную функции f(x)=x^2-x-6 в точках пересечения графика этой функции с осями координат
    3. Решите неравенство (cos2x+3tgпи/8)'>=2cosx

Ответы 1

  • 1)\; \; f(x)=(3x+2)^3\cdot (2x-1)^4\\\\f'(x)=3\cdot (3x+2)^2\cdot 3\cdot (2x-1)^4+(3x+2)^3\cdot 4\cdot (2x-1)^3\cdot 2=\\\\=9\cdot (3x+2)^2(2x-1)^4+8\cdot (3x+2)^3(2x-1)^3\\\\2)\; \; f(x)=x^2-x-6\\\\f(x)=0\; ,\; \; esli\; \; x^2-x-6=(x-3)(x+2)=0\; ,\; x_1=-2,\; x_2=3\\\\f'(x)=2x-1\\\\f'(-2)=2\cdot (-2)-1=-5\\\\f'(3)=2\cdot 3-1=53)\; \; (cos2x+\underbrace {3tg\frac{\pi}{8}}_{const})' \geq 2cosx\\\\-2sin2x+0 \geq 2cosx\; |:2\\\\cosx+sin2x \leq 0\\\\cosx+2sina\cdot cosx \leq 0\\\\cosx(1+2sinx) \leq 0\\\\a)\; \;  \left \{ {{cosx \leq 0} \atop {1+2sinx \geq 0}} ight. \;  \left \{ {{\frac{\pi}{2}+2\pi n \leq x \leq \frac{3\pi}{2}+2\pi n} \atop {sinx \geq -\frac{1}{2}}} ight. \;  \left \{ {{\frac{\pi}{2}+2\pi n \leq x \leq \frac{3\pi}{2}+2\pi n} \atop { -\frac{\pi}{6}+2\pi k\leq x \leq \frac{7\pi}{6}+2\pi k}} ight. \; \Rightarrow \frac{\pi}{2}+2\pi n \leq x \leq \frac{7\pi}{6}+2\pi n\; ,\; n\in Z\\\\b)\; \;  \left \{ {{cosx \geq 0} \atop {sinx \leq -\frac{1}{2}}} ight. \;  \left \{ {{-\frac{\pi}{2}+2\pi n \leq x \leq  \frac{\pi}{2}+2\pi n} \atop { -\frac{5\pi}{6}+2\pi k\leq x \leq -\frac{\pi}{6}+2\pi k}} ight. \; \; \Rightarrow \\\\ -\frac{\pi}{2}+2\pi n\leq x \leq -\frac{\pi}{6}+2\pi n,\; n\in Z\\\\Otvet:\; \; x\in [-\frac{\pi}{2}+2\pi n;-\frac{\pi}{6}+2\pi n]\cup [\frac{\pi}{2}+2\pi n;\frac{7\pi}{6}+2\pi n]
    • Автор:

      stanley65
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years