Дано:AB = 0,5 км∠CAD = 30°∠CBD = 45°__________h - ?Решение:По теореме синусов:AB / Sin(∠ACB) = AC / Sin(∠ABC) = CB / Sin(∠CAB)∠ABC = 180° - ∠CBD = 180° - 45° = 135°∠CAD = ∠CAB∠ACB = 180° - (∠ABC + ∠BAC) = 180° - (135° + 30°) = 15°0,5 / Sin(15°) = CB / Sin(30°)CB = 0,5 * Sin(30°) / Sin(15°) = 0,5 * Sin(30⁰) / (sin(45⁰) cos(30⁰) - sin(30⁰) cos(45⁰)) = 1/4 / ((√3/2 - 1/2)√2/2) = 2 / (4*(√3/2 - 1/2)√2) =1/ ((√6 - √2)/2) = 2 / (√6 - √2)CB / Sin(∠CDB) = CD / Sin(∠CBD)∠CDB = 90°∠CBD = 45°CD = CB * Sin(∠CBD) / Sin(∠CDB) = 2 / (√6 - √2) * Sin(45°) / Sin(90°) = 2 / (√6 - √2) * √2/2 / 1 = 2 / ((√3 - 1)√2) * √2/2 = (2√2) / (2*(√3 - 1)√2) = 1 / (√3 - 1)Ответ: 1 / (√3 - 1)