При любых значениях a и b верно равенство (a+b) 3 = a 3+3a 2b+3ab 2+b 3 . (1) Доказательство. (a+b) 3 = (a+b)(a 2+2ab+b 2) = = a 3+2a 2b+ab 2 + a 2b+2ab 2+b 3 = = a 3+3a 2b+3ab 2+b 3 Так как равенство (1) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба суммы. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество. (5y 3+2z) 3 = 125y 9+150y 6z +60y 3z 2+8z 3 . (2) Поэтому формула куба суммы читается так: куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения на квадрат второго, плюс куб второго выражения. При любых значениях a и b верно равенство (a−b) 3 = a 3−3a 2b+3ab 2−b 3 . (3) Доказательство. (a−b) 3 = (a−b)(a 2−2ab+b 2) = = a 3−2a 2b+ab 2 − a 2b+2ab 2−b 3 = = a 3−3a 2b+3ab 2−b 3 Так как равенство (3) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба разности. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество. (5y 3−2z) 3 = 125y 9−150y 6z +60y 3z 2−8z 3 . (4) Поэтому формула куба разности читается так: куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения и квадрата второго, минус куб второго выражения.