Решите уравнение а)2cosx -2cos²x +sin²x =0 ; б) Найдите все корни этого уравнения принадлежащие отрезку [ 3π ; 9π/2 ]-------------------------------------------а)2cosx -2cos²x +1 -cos²x =0 ;3cos²x -2cosx -1 =0 ; * * *3cos²x -3cosx +cosx -1 =3cosx(cosx - 1) +(cosx -1) =(cosx - 1)(3cosx +1) * * [ cosx = 1 ; cosx = -1/3или стандартно, замена: cosx =t 3t² -2t -1 =0 ; D/4 =(2/2)² -3*(-1) =4 =2² * * * D =16 * * *t₁= (1+2) /3 =1 ;t₂ =(1-2) /3 = - 1/3.--------а₁)cosx =1 ; x =2πn , n ∈ Z.---- или ----а₂)cosx = -1/3 ;x = ± ( π -arccos(1/3) ) +2πk , k ∈ Z. ответ: 2πn , n ∈ Z и ± ( π -arccos(1/3) ) +2πk , k ∈ Z* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *б) x ∈[ 3π ; 9π/2 ]---------------------------б₁) x =2πn , n ∈ Z.3π ≤ 2πn ≤ 9π/2⇔ 3/2 ≤ n ≤ 9/4 ⇒ n =2 , т.е. x =4π .---б₂) x = ± ( π -arccos(1/3) ) +2πk , k ∈ Z. разделяем б₂₁)3π ≤ - π +arccos(1/3) +2πk ≤ 9π/2 ;4π - arccos(1/3) ≤ 2πk ≤ 11π/2 -arccos(1/3) 2 - arccos(1/3) / 2π ≤ k ≤ 11/4 -arccos(1/3) / 2π ⇒ k =2 , т.е. x = 3π +arccos(1/3) --------б₂₂)3π ≤ π -arccos(1/3) +2πk ≤ 9π/2 ; 2π +arccos(1/3) ≤ 2πk ≤ 7π/2 +arccos(1/3) ;1 +arccos(1/3) / 2π ≤ k ≤ 7/4 +arccos(1/3) / 2π ⇒ k∈∅ответ: 3π +arccos(1/3) , 4π .=======================Удачи !