• 1-й член геометрической прогрессии равен -0,75, а произведение 2-го и 6-го членов равно 36. Найдите 5-й член прогрессии, если известно, что знаменатель прогрессии положителен.

Ответы 1

  • По условию b_1=-0.75 и b_2\cdot b_6=36. Используя формулу n-го члена геометрической прогрессии b_n=b_1q^{n-1}, получим b_1q\cdot b_1q^5=36 или b_1^2q^6=36.Подставив b_1=-0.75, получим 0.5625q^6=36 или q^6=64 откуда q=\pm2. Поскольку, по условию, знаменатель прогрессии положителен, то q=2 Тогда пятый член геометрической прогрессии:b_5=b_1q^4=(-0.75)\cdot2^4=-12.Ответ: -12.
    • Автор:

      ramón16
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years