• Доказать, что [tex] x^{2}+y^{2}+z^{2} \geq 3[/tex] , если [tex] x+y+z=3[/tex]

Ответы 1

  • 1 способ. Рассмотрим векторы a=(x,y,z) и b=(1,1,1). Тогда, в силу неравенства  |a·b|≤|a|·|b|, получаем |x+y+z|≤√3·√(x²+y²+z²), т.е. √3≤√(x²+y²+z²), откуда 3≤x²+y²+z².2 способ. 9= (x+y+z)² = x²+y²+z²+2xy+2yz+2xz ≤ x²+y²+z²+(x²+y²)+(y²+z²)+(x²+z²) == 3(x²+y²+z²), т.е. x²+y²+z²≥3. Здесь воспользовались очевидным неравенством 2ху≤x²+y².
    • Автор:

      crystal99
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years