tg²x - 2sin²x = 0sin²x/cos²x - 2sin²x = 0ОДЗ:cosx ≠ 0x ≠ π/2 + πm, m ∈ Zsin²x - 2sin²xcos²x = 0sin²x(1 - 2cos²x) = 0Произведение множителей равно нулю, если хотя бы один из множителей равен нулю:1) sinx = 0x = πn, n ∈ Z - данное решение не уд. ОДЗ2) 1 - 2cos²x = 0-(2cos²x - 1) = 0-cos2x = 0cos2x = 02x = π/2 + πk, k ∈ Zx = π/4 + πk/2, k ∈ Z-3π/4 ≤ πn ≤ 2π, n ∈ Z-0,75 ≤ n ≤ 2, n ∈ Zn = 0; 1; 2.x₁ = -π;x₂ = 0x₃ = π-3π/4 ≤ π/4 + πk/2 ≤ 2π, k ∈ Z -3 ≤ 1 + 2k ≤ 8, k ∈ Zk = -2; -1; 0; 1; 2; 3x₄ = π/4 - π = -3π/4x₅ = π/4 - π/2 = -π/4x₆ = π/4x₇ = π/4 + π/2 = 3π/4x₈ = π/4 + π = 5π/4x₉ = π/4 + 3π/2 = 7π/4Ответ: x = πn, n ∈ Z; π/4 + πk/2, k ∈ Z; -π; 0; π; -3π/4; -π/4; π/4; 3π/4; 5π/4; 7π/4.