\frac{15^x-3^{x+1}-5^{x+1}+15}{-x^2+2x} \geq 0\\\\
-\frac{3^x5^x-3*3^{x}-5*5^{x}+3*5}{x^2-2x} \geq 0\\\\
\frac{3^x(5^x-3)-5(5^x-3)}{x^2-2x} \leq 0\\\\
\frac{(3^x-5)(5^x-3)}{x(x-2)} \leq 0\\\\\\
(3^x-5)(5^x-3)=0\\
3^x-5=0\\
3^x=5\\
x_1 = \log_35\\\\
5^x-3=0\\
5^x=3\\
x_2 = \log_53\\\\
x(x-2)=0\\
x_3=0\\
x_4=2\\+ | - | + | - | + | | | | | | | | | | | |.........0...............(log_5(3)).................(log_3(5))..............2................x \in (0; \log_53] \cup [\log_35;2)\\