• Группа туристов отправилась в 8ч утра на прогулку на моторной лодке по течению реки. Отплыв от пристани на некоторое расстояние, туристы сделали на берегу привал на 2 ч и вернулись обратно в 16ч 15мин. На какое расстояние отплыли туристы, если известно, что скорость лодки в стоячей воде равна 15км/ч, а скорость течения реки равна 3 км/ч? ps решить уравнением

Ответы 2

  • Пусть х - искомое расстояние. Тогда до привала они плыли по течению -

    -  х/18 часов. Потом привал - 2 часа, потом обратно то же расстояние, но против течения -  х/12 часов. Общее время: 16,25 - 8 = 8,25 часа.

    Уравнение:

    х/18  + 2  +  х/12  =  8,25

    Или х/18  +  х/12  =  25/4

    (5/36)*х = 225/36

    х = 225/5 = 45 км.

    Ответ: 45 км.

  • 15+3=18(км/ч) - скорость лодки по течению

    15-3=12 (км/ч) - скорость лодки против течения

    Пусть расстояние, на которое отплыли туристы, равно х км. Тогда по течению они плыли \frac{x}{18} часов, а против течения \frac{x}{12} часов. Учитывая привал, который длился 2 часа, всего в пути туристы были 16,25 - 8 - 2 = 6,25 (часов). Составляем уравнение:

    \frac{x}{18} + \frac{x}{12} = 6,25

    2х+3х=225

    5х=225

    х=45

    Ответ. 45 км. 

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years