• Ребята,даю 20 баллов
    Задание достаточно сложное
    Пришлите ваш ответ подробно с решением

    question img

Ответы 1

  • f(x)=(x-2)^2/x^3(1-x). Тогда f(x+1)=(x+1-2)^2/(x+1)^3(1-x-1)=(x-1)^2/-x*(x+1)^3. Соответственно f(1/(x+1))=(1/(x+1)-2)^2/(1/(x+1))^3*(1-1/(x+1)). Т. о. имеем систему:

    (x-1)^2/-x*(x+1)^3 ≤ 0

    (1/(x+1)-2)^2/(1/(x+1))^3*(1-1/(x+1)) ≥ 0.

    ОДЗ первого неравенства -x*(x+1)^3 ≠ 0 => x ≠ 0 и x ≠ -1.

    Из первого неравенства системы имеем, поскольку (x-1)^2 ≥ 0 => x∈(+∞, -∞), то должно выполняться -x*(x+1)^3 <0. Отсюда либо x<0, (x+1)^3<0, либо x>0, (x+1)^3>0. В первом случае x∈(-∞, -1), во втором  x∈(-1,+∞ ). Т. е. x∈(-∞, -1)⋃(-1,+∞ ).

    ОДЗ второго неравенства (x+1)^3 ≠ 0, x+1 ≠ 0 и (1/(x+1))^3*(1-1/(x+1)) ≠ 0. Отсюда x ≠ -1, 1/(x+1) ≠ 1 => x+1 ≠ 1 => x ≠ 0.

    Из второго неравенства системы, поскольку (1/(x+1)-2)^2 ≥ 0 и x∈(-∞, -1)⋃(-1,+∞ ), то должно выполняться (1/(x+1))^3*(1-1/(x+1)) > 0. Отсюда либо 1/(x+1))^3 > 0 и 1-1/(x+1) > 0, либо 1/(x+1))^3 < 0 и 1-1/(x+1) < 0. В первом случае x∈(-1, +∞) и x∈(-∞, -1 ) и x∈(0, +∞). Объединяя, оставляем один интервал x∈(0, +∞). Во втором x∈(-∞, -1) и ни при каких x. Объединяя, получаем пустое множество. Объединяя все результаты, получаем x∈(0, +∞).

    Ответ: x∈(0, +∞).

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years