• Докажите по индукции, что для любого натурального n выполняется равенство: 2+4+6+...+2n=n(n+1)

Ответы 2

  • База . При n = 2   2 + 4 = 6 = 2 * 3

    Предположение. Пусть при некотором n   2 + 4 + ... + 2 * n = n * (n + 1)

    Переход. Тогда для  n + 1

    2 + 4 + ... + 2 * (n + 1) = (2 + 4 + ... + 2 * n) + (2 * n + 2) =

    n * (n + 1) + (2 * n + 2) = n² + n + 2 * n + 2 = n² + 3 * n + 2 = (n + 1) * (n + 2)

    Утверждение доказано

  • Проверяем при n=1:   1(1+1) = 2  верно

    Пусть утверждение верно при n=N: 1+2+4+...2N = N(N+1)

    Проверим, верно ли утверждение при n = N+1:

    1+2+4+...+2N  +2(N+1) = N(N+1) + 2(N+1) = (N+1)(N+2)    - верно

    Значит исходное утверждение - верно.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years