• Решить Тригонометрическое уравнение
    6cos^2x-5sinx+1=0

Ответы 1

  • 6cos^2x-5sinx+1=0 \\ 6(1-sin^2x)-5sinx+1=0 \\ 6-6sin^2x-5sinx+1=0 \\ -6sin^2x-5sinx+7=0(*-1) \\ 6sin^2x+5sinx-7=0 \\ D=25+168=193 \\ sinx_1= \frac{-5+ \sqrt{193} }{12} \\ sinx_2 eq \frac{-5- \sqrt{193} }{12} \\ \\ x_1=(-1)^{k}*arcsin( \frac{-5+ \sqrt{193} }{12})+ \pi k Второй корень не равен потому что область определения sinx [-1;1]
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years