• В прямоугольном треугольнике ABC на гипотенузе AB выбрана точка E так , что AC=CE. Биссектрисы CL и EK треугольника BCE пересекаются в точке I . Известно , что треугольник IKC равнобедренный. Найдите CL:AB

Ответы 1

  • Положим что CAB=a ,тогда из условия CEA=a. Выразим углы CIM , CKI через a , ACE=180-2a , так как ACB=90 , то BCE=90-(180-2a)=2a-90 , CL-биссектриса , значит EC=KCI=BCE/2=a-45 , аналогично CEL=CEB/2=(180-CEA)/2=90-(a/2) , значит CIK=ECI+CEI=45+(a/2) , откуда CKI=180-(3a/2). То есть углы в треугольнике IKC равны I=a/2+45 , C=a-45 , K=180-(3a/2) По условию IKC равнобедренный , значит надо проверить три условия равенства углов 1) I=C 2) C=K 3) I=K Подходит только I=K (решая уравнения) , откуда a=135/2 Найдём угол CLK=180-(a-45+180-a)=45 . Получаем AC/sin45=CL/sina CL/AB=AC*sina/(AB*sin45)=2*cosa*sina/sqrt(2)=sin(2a)/sqrt(2)=sin135/sqrt(2)=1/2 Ответ CL/AB=1/2
    • Автор:

      noahfjua
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years