• Здравствуйте, помогите решить, пожалуйста, задание в картинке

    question img

Ответы 2

  • y= \dfrac{x^2+2}{x^2+1}= \dfrac{x^2+1+1}{x^2+1} =1+ \dfrac{1}{x^2+1}  \displaystyle  \lim_{x \to \infty} \bigg(1+ \dfrac{1}{x^2+1}  \bigg)=1 - горизонтальная асимптота.
    • Автор:

      enrique
    • 5 лет назад
    • 0
  • выделим из дроби целую часть: \frac{x^2+2}{x^2+1} = \frac{(x^2+1)+1}{x^2+1} = \frac{x^2+1}{x^2+1} +\frac{1}{x^2+1}  =1+ \frac{1}{x^2+1}  знаменатель в этой функции не имеет корней => у функции будет только одна горизонтальная асимптота.найдем ее: \lim_{x \to \infty}  ( 1+ \frac{1}{x^2+1})=1+ \frac{1}{\infty}  =1+0=1это и есть асимптота: y=1Ответ: горизонтальную y=1
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years