В параллелограмме ABCD биссектрисы углов B и C пересекаются в точке H, лежащей на стороне AD. Найдите периметр параллелограмма ABCD если известно, что BC = 15 см.
Помогите, пожалуйста((
∠AHB = ∠HBC = ∠ABH, т.к. BH биссектриса ∠ABC и внутренние накрест лежащие углы, образованные пересечением прямой BH двух параллельных прямых BC и AD.Следовательно, AB=AH.Аналогично, ∠DHC = ∠BCH = ∠HCD и HD = CD.Отсюда следует, что точка Н лежит на середине стороны AD. Тогда, AB + CD = AH + HD = AD = BC = 15 см.Значит, весь периметр равен:(AB + CD) +BC + AD = 15 + 15 + 15 = 45 смОтвет: 45 см