• доказать, что любая натуральная степень числа 15 при делении на 7 датё остаток 1

Ответы 1

  • Остаток от деления 15 на 7 равен 1, т. к. 15 = 2*7 + 1. Рассмотрим n-ю степень числа 15: 15ⁿ = (2*7 + 1)ⁿ = (2*7 + 1)*(2*7 + 1)*...*(2*7 + 1). Имеем n множителей вида (2*7 + 1) и видим, что после перемножения последний член суммы всегда будет 1ⁿ = 1. Т. е. остаток 1 будет сохраняться.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years