• Помогите пожалуйста! Очень надо! (алгебра 9 кл)
    1. Высота треугольника на 1 больше стороны, к которой она проведена. Найдите наибольшее возможное значение длины этой стороны треугольника, если известно, что его площадь не превышает 10.

    2. Найдите количество целых решений неравенства [tex] x^{2} + (4* x^{2})/ ( x+2) ( x+2) \leq 5[/tex]

Ответы 1

  • 1)x-сторона треугольника , x+1 высота S=x(x+1)/2<=10 x^2+x-20<=0 (x+5)(x-4)<=0 -5<=x<=4 откуда сторона x=4 2) x^2+(4x^2/(x+2)^2)<=5 x не равен -2 x^2(x+2)^2+4x^2-5(x+2)^2<=0 x^4+4x^3+8x^2-5x^2-20x-20<=0  x^4+4x^3+3x^2-20x-20<=0 Рассмотрим x^4+4x^3+3x^2-20x-20=0 целые делители числа 20 являются +-1,2,+-4 при подстановке чисел -1 и 2 в уравнение ,оно обращается в 0 значит является корнем уравнения Значит если поделить данное уравнение на квадратный трехчлен (x-2)(x+1) получим x^2+5x+10 (x-2)(x+1)(x^2+5x+10)<=0  так как x^2+5x+10>=0 , то решение является промежуток -1<=x<=2Откуда целые решения  x=-1,0,1,2
    • Автор:

      gardner
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years