task/27268281-------------------1.cos²3x - sin²3x =0; * * * cos²α - sin²α =cos2α * * *cos6x=0 ;6x =π/2 +πn , n ∈Z.x =π/12 +(π/6)*n , n ∈Z . ---2.sinx*cosx = √3 /4 ; * * * 2sinα *cosα =sin2α * * *sin2x =√3 /2 ; 2x = (-1)ⁿ *(π/3) +πn , n ∈Z . x = (-1)ⁿ *(π/6) +(π/2)*n , n ∈Z . ---3.5sin²x +sinx - 6 = 0 , замена t = sinx , -1≤ t ≤ 1 5t² + t - 6 =0 ; D = 1² -4*5*(-6) = 1+120 =121 =11² t₁ = (-1-11)/ (2*5 ) = -1,2 < -1 , посторонний кореньt₂ =( -1+11) /10 = 1 .обратная замена :sinx = 1;x = π/2 +2πn , n ∈ Z.---4. 1 - cos2x = 2sinx ; * * * cos2x =cos²x -sin²x =1-2sin²x 2sin²x = 2sinx ; sinx(sinx -1) =0 ;sinx = 0 ⇒ x₁ =πn , n∈Zилиsinx -1 =0 ⇔sinx=1 ⇒ x₂=π/2 +2πn , n∈Z.---5 . 5sin²x + 6cosx - 6 = 0 ;5(1 -cos²x)+6cosx - 6 = 0 ; 5cos²x - 6cosx + 1 = 0 ; D₁ = 3² -5*1 =4 =2² ; * * * кв. урав. отн. cosx * * *cosx₁ =(3 -2)/5 =1/5 ⇒ x₁ =(-1)ⁿ *arcsin(1/5) +πn , n ∈Z . cosx₂ =(3 +2)/5 =1 . ⇒ x₂ = 2πn , n ∈Z .