1) Решите уравнения. Пусть V-квадратный корень.1) 6x^2-5x+1=0D=(-5)^2-4*6*1=25-24=1x1=(-(-5)-V1)/2*6=(5-1)/12=4/12=1/3x2=(-(-5)+V1)/2*6=(5+1)/12=6/12=1/2;2) x^2+7x=0x*(x+7)=0x1=0x2+7=0x2=-73) x^3-9x=0x*(x^2-9)=0x1=0x^2-9=0x^2=9x2=-3x3=3;4) (x^2-x)^2-5(x^2-x)-6=0(x^2-x)=aa^2-5a-6=0D=(-5)^2-4*1*(-6)=25+24=49a1=(-(-5)-V49)/2*1=(5-7)/2=-2/2=-1a2=(-(-5)+V49)/2=(5+7)/2=12/2=6(x^2-x)=-1x^2-x+1=0D=(-1)^2-4*1*1=1-4=-3, так как D<0-нет корней уравнения;x^2-x=6x^2-x-6=0D=(-1)^2-4*1*(-6)=1+24=25x1=(-(-1)-V25)/2*1=(1-5)/2=-4/2=-2x2=(-(-1)+V25)/2*1=(1+5)/2=6/2=3 2) Составить квадратное уравнение, корни которого -3 и 4.(x-x1)*(x-x2)=(x-(-3))*(x-4)=(x+3)*(x-4)=x^2-4x+3x-12=x^2-x-12;3) Разность корней квадратного уравнения x^2 +3x+q=0 равна 7.Найдите q.x1-x2=7По т.Виета x1+x2=-p x1*x2=q{x1-x2=7{x1+x2=-3- получили систему уравнений. Сложим уравнения и получим:2x1=4x1=4/2=2-Данный корень подставим во второе уравнение системы.x1+x2=-3x2=-3-x1x2=-3-2x2=-5x1*x2=2*(-5)=-10x^2+3x-10=0;4) Выделив квадрат двучлена,найдите наименьшее значение выражения x^2-2x+2=x^2-2x+1+1=(x+1)^2+1;
5) Найдите два последовательных натуральных числа, если их сумма больше суммы их квадрата на 60. Пусть x-одно число, (x+1)-второе число.
Тогда (x+x+1)^2=x^2+(x+1)^2+60
4x^2+1=x^2+x^2+2x+1+60
4x^2+1-2x^2-2x-61=0
2x^2-2x-60=0|:2
x^2-x-30=0
По т.Виета x1+x2=-1
x1*x2=-30
x1=-6-не является решением.
x2=5.
Тогда первое число x =5
Второе число х+1=6
Ответ: 5 и 6.