• Найти dy/dx и d^2y/dx^2 для заданных функций: а) y=xe^-x^2; б)x=lnt; в) y=1/2(t+1/t)

Ответы 1

  • 1) y=x*e^{-x^2} \frac{dy}{dx}=1*e^{-x^2}+x*e^{-x^2}*(-2x)=(1-2x^2)e^{-x^2}  \frac{d^2y}{dx^2} =(-4x)e^{-x^2}+(1-2x^2)e^{-x^2}*(-2x)=(-4x-2x+4x^3)e^{-x^2}= \\ =(4x^3-6x)e^{-x^2}=2x(2x^2-3)e^{-x^2}2) Функция задана параметрически{ x = ln t{ y = 1/2*(t+1/t)Берем производные по параметру t:{ x' = 1/t{ y' = 1/2*(1 - 1/t^2) = (t^2 - 1)/(2t^2)Первая производная: \frac{dy}{dx} = \frac{y'}{x'} = \frac{t^2-1}{2t^2} : \frac{1}{t} = \frac{t^2-1}{2t} Берем вторые производные по параметру t:{  x'' =- \frac{1}{t^2}  {  y'' = \frac{2t*2t^2-(t^2-1)*4t}{4t^4}= \frac{4t}{4t^4} = \frac{1}{t^3}  Вторая производная: \frac{d^2y}{d^2x} = \frac{y''*x'-x''*y'}{(x')^3} = (\frac{1}{t^3}* \frac{1}{t}+ \frac{1}{t^2}* \frac{t^2-1}{2t^2}):( \frac{1}{t} )^3= \frac{2+t^2-1}{2t^4}*t^3= \frac{t^2+1}{2t}
    • Автор:

      parsons
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years