• Выполнить расчет и построить график функции.x2-6x+4/2-2x

Ответы 1

  • Дана функция у = (х² - 6x + 4)/(2 - 2x).Находим точки пересечения графика этой функции с осями.С осью Ох, у = 0.Приравниваем нулю числитель:х² - 6x + 4 = 0.Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*4=36-4*4=36-16=20;Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√20-(-6))/(2*1)=(√20+6)/2=√20/2+6/2 = √5 + 3 ≈ 5,23606798;x_2=(-√20-(-6))/(2*1)=(-√20+6)/2=-√20/2+6/2 = -√5 + 3 ≈ 0,763932.С осью Оу: х = 0, у = 4/2 = 2.Производная равна (-х²+2х-2)/((2-2х)²). Она не равна нулю, поэтому функция не имеет ни минимума, ни максимума.Есть точка разрыва при х = 1 (это вертикальная асимптота).Горизонтальной асимптоты тоже нет.Наклонную асимптоту можно найти, подсчитав предел функции (x^2 - 6*x + 4)/(2 - 2*x), делённой на x при x->+∞ и x ->-∞\lim_{x \to -\infty}\left(\frac{x^{2} - 6 x + 4}{x \left(- 2 x + 2ight)}ight) = - \frac{1}{2}Возьмём предел, значит, уравнение наклонной асимптоты слева:y = - \frac{x}{2} или (-1/2)х+2,.5.\lim_{x \to \infty}\left(\frac{x^{2} - 6 x + 4}{x \left(- 2 x + 2ight)}ight) = - \frac{1}{2}.Возьмём предел, значит, уравнение наклонной асимптоты справа:y = - \frac{x}{2} или (-1/2)х+2,5.Находим коэффициент b:b = limf(x) - kx = 5/2.Получаем уравнение наклонной асимптоты: y = (-1/2)x + (5/2).Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).Итак, проверяем:\frac{x^{2} - 6 x + 4}{- 2 x + 2} = \frac{x^{2} + 6 x + 4}{2 x + 2}.- Нет.\frac{x^{2} - 6 x + 4}{- 2 x + 2} = - \frac{x^{2} + 6 x + 4}{2 x + 2}.- Нет.Значит, функция не является ни чётной ни нечётной.y(x)=(x²−6x+4)/(2−2)Таблица точекxy-3.0  3.9    -2.5   3.6     -2.0  3.3     -1.5  3.1    -1.0  2.8     -0.5  2.4  0   2      0.5  1.3     1.0   -      1.5     2,8        2,0      2                                         2.5    1.6      3.0   1.3    3.5     1      4.0     0.7       4.5     0.4      5.0    0.1      5.5   -0.1     6.0    -0.4
    answer img
    • Автор:

      piper1g4g
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years