• Решить систему уравнений y^2-2xy=32 и x^2+6xy+9y^2=100.
    Жду)

Ответы 1

  •  \left \{ {{y^2-2xy=32} \atop {x^2+6xy+9y^2=100}} ight. \\\\
 \left \{ {{y^2-2xy=32} \atop {(x+3y)^2-10^2=0}} ight. \\\\
 \left \{ {{y^2-2xy=32} \atop {x^2+6xy+9y^2=100}} ight. \\\\
 \left \{ {{y^2-2xy=32} \atop {[x+3y+10]*[x+3y-10]=0}} ight. \\\\
 \left \{ {{y^2-2xy=32} \atop {x+3y+10=0}} ight.\ or\  \left \{ {{y^2-2xy=32} \atop {x+3y-10=0}} ight. \\\\
 \left \{ {{y^2-2y(-3y-10)-32=0} \atop {x=-3y-10}} ight.\ or\  \left \{ {{y^2-2y(-3y+10)-32=0} \atop {x=-3y+10}} ight. \\\\ \left \{ {{y^2+6y^2+20y-32=0} \atop {x=-3y-10}} ight.\ or\  \left \{ {{y^2+6y^2-20y-32=0} \atop {x=-3y+10}} ight. \\\\
 \left \{ {{7y^2+20y-32=0} \atop {x=-3y-10}} ight.\ or\  \left \{ {{7y^2-20y-32=0} \atop {x=-3y+10}} ight. \\\\
D_1=D_2=20^2-4*7*(-32)=400+896=1296=36^2\\\\
 \left \{ {y=\frac{-20\pm36}{2*7}=\frac{-10\pm18}{7}} \atop {x=-3y-10}} ight.\ or\  \left \{ {{y=\frac{20\pm36}{2*7}=\frac{10\pm18}{7}} \atop {x=-3y+10}} ight. \\\\ \left \{ {y=\frac{-20\pm36}{2*7}=\frac{-10\pm18}{7}} \atop {x=-3y-10}} ight.\ or\  \left \{ {{y=\frac{20\pm36}{2*7}=\frac{10\pm18}{7}} \atop {x=-3y+10}} ight. \\\\
 \left \{ {{y=-4\ \ or\ \ y=\frac{8}{7}} \atop {x=-3y-10}} ight.\ \ or\ \  \left \{ {{y=4\ \ or\ \ y=-\frac{8}{7}} \atop {x=-3y+10}} ight. \\\\
(2;\ -4)\ or\ (-\frac{94}{7};\ \frac{8}{7})\ or\ (-2;\ 4)\ or\ (\frac{94}{7};\ -\frac{8}{7})\\\\
(\pm2;\ \mp4)\ or\  (\pm\frac{94}{7};\ \mp\frac{8}{7})
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years