Дано: sin α + cos α = 0,5Вычислить: sin⁵α + cos⁵αI. sin α + cos α = 1/2 возвести обе части в квадратsin²α + 2sinα cosα + cos²α = 1/41 + sin (2α) = 1/4sin (2α) = -3/4II.sin⁵α + cos⁵α = =(sinα + cosα)(sin⁴α - sin³α*cosα + sin²α*cos²α - sinα*cos³α + cos⁴α) ==0,5((sin⁴α + 2sin²α*cos²α + cos⁴α) - sin²α*cos²α - (sin³α*cosα+sinα*cos³α))==0,5( (sin²α + cos²α)² - sin²α*cos²α - sinα*cosα (sin²α + cos²α) )= =1= =1==0,5 (1 - (1/4)(2sinα*cosα)² - (1/2)*(2sinα*cosα) ) ==0,5 (1 - (1/4) sin²(2α) - (1/2) sin(2α)) =
![= \frac{1}{2} (1 - \frac{1}{4}*(- \frac{3}{4} )^2- \frac{1}{2} *(- \frac{3}{4} ) )= \\ \\ = \frac{1}{2} (1 - \frac{1}{4}* \frac{9}{16} + \frac{3}{8} )= \\ \\ = \frac{1}{2} (1 - \frac{9}{64} + \frac{24}{64} )= \frac{1}{2} * \frac{79}{64} = \frac{79}{128} = \frac{1}{2} (1 - \frac{1}{4}*(- \frac{3}{4} )^2- \frac{1}{2} *(- \frac{3}{4} ) )= \\ \\ = \frac{1}{2} (1 - \frac{1}{4}* \frac{9}{16} + \frac{3}{8} )= \\ \\ = \frac{1}{2} (1 - \frac{9}{64} + \frac{24}{64} )= \frac{1}{2} * \frac{79}{64} = \frac{79}{128}](https://tex.z-dn.net/?f== \frac{1}{2} (1 - \frac{1}{4}*(- \frac{3}{4} )^2- \frac{1}{2} *(- \frac{3}{4} ) )= \\ \\ = \frac{1}{2} (1 - \frac{1}{4}* \frac{9}{16} + \frac{3}{8} )= \\ \\ = \frac{1}{2} (1 - \frac{9}{64} + \frac{24}{64} )= \frac{1}{2} * \frac{79}{64} = \frac{79}{128} )
sin⁵α + cos⁵α =
![\frac{79}{128} \frac{79}{128}](https://tex.z-dn.net/?f= \frac{79}{128} )
-----------------------------------------------------------------------Использованы формулыsin²α + cos²α = 12 sinα cosα = sin (2α)a⁵ + b⁵ = (a + b)(a⁴ - a³b + a²b² - ab³ + b⁴)