• помогите пожалуйста решить, можно не все задания, но 4 обязательно

    question img

Ответы 1

  • 1)3^(x-4)=1/3^(3+x)3^(x-4)=(3^(-1))^3+x3^(x-4)=3^(-3-x)x-4=-3-x2x=1x=0.5Проверка:3^-3.5=0.0211/3^3.5=0.0210.021=0.021Ответ:x=0.52. \sqrt{4-x}=2

4-x=2^2

4-x=4

x=0 Ответ:x=03.log4 (x^2+4x-20)=0log4 (x^2+4x-20=log4 1x^2+4x-20=1x^2+4x-21=0D=16-4*1*(-21)=100=10^2x1=(-4+10)/2=3x2=(-4-10)/2=-14/2=-7Ответ:X1=3 X2=-74. Ymin=-∞ при x=∞     Ymax=∞ при x=-∞     Y`(x)=3-3x^2     Y`(x)=0     3-3x^2=0     3x^2=3      X^2=1     X1=1     X2=-1     Функция имеет 2 критические точки X1=1 X2=-1     Функция убывает при x∈(-∞;-1)      Функция возрастает при x∈(-1;1)      Функция убывает при x∈(1;+∞)      f(-1)=2      f(1)=2      Исследуем функцию на выпуклость и вогнутость      f``(x)=-6x      Функция вогнута при f``(x)>0      -6x>0      x>0/-6      x<0      Функция вогнута при x∈(-∞;0)      Функция выпукла при f``(X)<0       -6x<0        x>0        Функция выпукла при x∈(0;∞)         X=0-точка перегиба5.a) \int\limits^a_b {2x^4-3x+ \frac{1}{x}+4 } \, dx = \frac{2x^5}{5} - \frac{3x^3}{2}+log(x)+4x b)tex] \int\limits^ \frac{ \pi }{4} _ \frac{ \pi }{4} { \frac{1}{cos^2x}+sixn } \, dx =tg(x)-cosx[/tex]tg(pi/4)=1cos(pi/4)=√2/21-√2/2=0.2930.293-0.293=0Ответ:0с) \int\limits^a_b {(1-x^4)^2*x^3} \, dx =  \frac{ x^{12} }{12} - \frac{x^8}{4} + \frac{x^4}{4} d) \int\limits^2_1 {x^3-6x^2} \, dx = \frac{x^4}{4}-2x^3  x=216/4=42*2^3=164-16=-12x=11/4=0.252*1=20.25-2=-1.75-12-(-1.75-10.256)  \int\limits^2_ {x^2} \, dx=x^3/3
 При x=28/3При x=008/3-0=0Ответ:8/3P=(20/100)=0.2Ответ:0.2
    • Автор:

      Ángela30
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years