• Формаула разности квадратов!
    7. Разложите на множители:
    а) 5x^2 - 125
    б) 64 - 4y^2
    в) ax^2 - ay^2
    г) x^3 - xy^2
    д) (x+y)^2 - z^2
    е) 81 - (a + 2b)^2
    ж) (a + 2b)^2 - (a - 2b)^2
    з) (c + d)^2 - (2c + 3d)^2
    и) a^2n - b^2m
    к) c^4n - d^4

Ответы 6

  • можно еще раз применить разность квадратов в конце
    • Автор:

      aileen
    • 5 лет назад
    • 0
  • c^(2n) - d^2 = (c^n-d)(c^n+d)
    • Автор:

      william86
    • 5 лет назад
    • 0
  • До конца делаем!
  • Всё!
    • Автор:

      regina72
    • 5 лет назад
    • 0
  • а) 5 {x}^{2} - 125 = 5( {x}^{2} - 25) = 5(x - 5)(x + 5)б) 64 - 4 {y}^{2} = 4(16 - {y}^{2} ) = 4(4 - y)(4 + y)в) a {x}^{2} - a {y}^{2} = a( {x}^{2} - {y}^{2} ) = a(x - y)(x + y)г)  {x}^{3} - x {y}^{2} = x( {x}^{2} - {y}^{2} ) = x(x - y)(x + y)д)  {(x + y)}^{2} - {z}^{2} = (x + y + z)(x + y - z)е) 81 - {(a + 2b)}^{2} = (9 + a + 2b)(9 - a - 2b)ж)  {(a + 2b)}^{2} - {(a - 2b)}^{2} = (a + 2b + a - 2b)(a + 2b - a + 2b) = 2a \times 4b = 8abз)  {(c + d)}^{2} - {(2c + 3d)}^{2} = (c + d + 2c + 3d)(c + d - 2c - 3d) = (3c + 4d)( - c - 2d)и)  {a}^{2n} - {b}^{2m} = ({a }^{n} - {b}^{m} )({a}^{n} + {b}^{n} )к)  {c}^{4n} - {d}^{4} = ( {c}^{2n} - {d}^{2} )( {c}^{2n} + {d}^{2} ) = ({c}^{n} - d)({c}^{n} + d)({c}^{2n} + d)
  • а) 5x² - 125  = 5(x² - 25)  = 5(х-5)(х+5)

    б) 64 - 4y² = 8² - (2у)²  = (8-2у)(8+2у)

    в) ax² - ay²  = а(х² - у²) = а(х-у)(х+у)

    г) x³ - xy² = х(х² - у²) = х(х-у)(х+у)

    д) (x+y)² - z² = (х+у-z)(x+y+z)

    е) 81 - (a + 2b)² =  9² - (a + 2b)² =  (9-a-2b)(9+a+2b)

    ж) (a + 2b)² - (a - 2b)² = (a+2b-a+2b)(a+2b+a-2b)  = 4b · 2a = 8ab

    з) (c + d)² - (2c + 3d)² =  (c+d-2c-3d)(c+d+2c+3d)  = (-c-2d)(3c+4d) =

     = -(c+2d)(3c+4d)

    и)  a^{2n} -b^{2m} = (a^n)^2-(b^m)^2=(a^n-b^m)(a^n+a^m)

    к) c^{4n} - d^4 = (c^{2n})^2 - (d^2)^2 = (c^{2n}-d^2)(c^{2n}+d^2)=(c^{n}-d)(c^{n}+d)(c^{2n}+d^2)

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years