• люди плиз помогите алгебра №201-203
    пж желательно подробно

    question img

Ответы 2

  • огромное спасибо)
    • Автор:

      stich
    • 6 лет назад
    • 0
  • Известная формула:

    |x|>a\; \; \Rightarrow \; \; \left [ {{x>a} \atop {x<-a}} ight. \; \; \Rightarrow \\\\/////\; (-a)-----(a)\; /////

    То есть значения "х" располагаются левее (-а) и правее (а) .

    Вместо "х" может быть записано любое выражение, а вместо "а" - любое число. В формуле надо только заменить "х" и "а" на те выражения или числа, которые заданы в условии.

    201)\; \; \Big |\frac{3x+1}{x-5}\Big |\geq 1\; \; \to \; \; \left [ {{\frac{3x+1}{x-5}\geq 1} \atop {\frac{3x+1}{x-5}\leq -1}} ight. \\\\a)\; \; \frac{3x+1}{x-5}-1\geq 0\; ,\; \; \frac{3x+1-(x-5)}{x-5}\geq 0\; ,\; \; \frac{2x+6}{x-5}\geq 0\; ,\; \; \frac{2(x+3)}{x-5}\geq 0\; ,\\\\+++[-3]---(5)+++\\\\x\in (-\infty ,-3\; ]\cup (5,+\infty )\\\\b)\; \; \frac{3x+1}{x-5}+1\leq 0\; ,\; \; \frac{3x+1+x-5}{x-5} \leq 0\; ,\; \; \frac{4x-4}{x-5}\leq 0\; ,\; \frac{4(x-1)}{x-5}\leq 0\; ,\\\\+++[\; 1\; ]---(5)+++

    x\in [\; 1,5)\\\\c)\; \; \left [ {{x\in (-\infty ,-3\, ]\cup (5,+\infty )} \atop {x\in [\, 1,5)}} ight. \; \; \Rightarrow \; \; \underline {x\in (-\infty ,-3\, ]\cup [\, 1,5)\cup (5,+\infty )}\\\\\\203)\; \; |3x-2|>2x+1\; \; \Rightarrow \; \; \left \{ {{3x-2>2x+1} \atop {3x-2<-(2x+1)}} ight. \\\\a)\; \; 3x-2>2x+1\; ,\; \; x>3\\\\b)\; \; 3x-2<-(2x+1)\; ,\; \; 3x-2<-2x-1\; ,\; \; 5x<1\; ,\; x<\frac{1}{5}\\\\c)\; \; \left [ {{x>3} \atop {x<\frac{1}{5}}} ight. \; \; \Rightarrow \; \; \underline {x\in (-\infty ,\frac{1}{5})\cup (3,+\infty )}

    P.S.\; \; |x|<a\; \; \Rightarrow \; \; -a<x<a\; \; \Rightarrow \\\\---(-a)\; ///////\; (a)---

    "х" принимает значения из промежутка между (-а) и (а) .

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years