• Решите срочно 25 баллов |6-2x|<или=3x+1

Ответы 3

  • Люди, удалите мой единственный вопрос!!!!
    • Автор:

      clark58
    • 5 лет назад
    • 0
  • |6 - 2x| ≤ 3x + 1

    \left \{ {{6-2x\leq3x+1 } \atop {6-2x\geq -3x-1}} ight.\\\\\left \{ {{-2x-3x\leq1-6} \atop {-2x+3x\geq -1-6}} ight.\\\\\left \{ {{-5x\leq-5 } \atop {x\geq-7 }} ight.\\\\\left \{ {{x\geq1 } \atop {x\geq -7}} ight.

    Ответ : x ∈ [1 ; + ∞)

  • Поскольку левая часть неравенства неотрицательно, а правая часть может быть так и неотрицательно, так и отрицательно, то при условии что 3x+1≥0 откуда x≥-1/3 возводим левую и правую части неравенства в квадрат.  (6-2x)^2\leq(3x+1)^2\\ (6-2x)^2-(3x+1)^2\leq0 Применим формулу разность квадратов в левой части неравенства (6-2x-3x-1)(6-2x+3x+1)\leq0\\ (-5x+5)(x+7)\leq0~~|:(-5)\\ (x-1)(x+7)\geq0 ___+____[-7]____-___[1]___+____ x \in (-\infty;-7]\cup[1;+\infty).  Найдем пересечение решения неравенства и условия x≥-1/3, получим x \in [1;+\infty) - ОТВЕТ

    • Автор:

      heidi97
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years