• Довести нерівність (a³-1)(a-1) ≥ 3a(a²-2a+1)

Ответы 1

  • Знайдемо різницю (a³-1)(a-1) - 3a(a²-2a+1) = (a²+ a +1)(a-1)² - 3a(a-1)² =

    = (a-1)²(a²+ a + 1 - 3a) = (a-1)²(a² + 1 - 2a) = (a-1)²(a-1)² = (a-1)⁴.

    Оскільки (a-1)⁴ ≥ 0, то (a³-1)(a-1) - 3a(a²-2a+1) ≥ 0. Звідси маємо, що зменшуване цієї різниці більше за від'ємник, тобто (a³-1)(a-1) ≥ 3a(a²-2a+1), що й треба було довести.

    • Автор:

      sandy52
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years