• Написать уравнение касательной к графику функци y=ln(1+x^2) в точке с абсциссой, равной 1. Сделать чертёж.

Ответы 1

  • Уравнение касательной: y=f'(x_{0})*(x-x_{0})+f(x)

    Найдём производную сложной функции по правилу (u(v))'=u(v)'*v', где v=1+x^2, u(v)=\ln{v}

    y'=\ln{(1+x^2)}'=\frac{1}{1+x^2}*(1+x^2)'=\frac{2x}{1+x^2}

    y'(1)=\frac{2*1}{1+1^2}=1 \\y(1)=\ln{(1+1^2)}=\ln{2}

    Уравнение касательной в точке x = 1: y=x-1+\ln{2}

    Ответ: y=x+\ln{2}-1

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years